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ABSTRACT

While document signatures are a well established tool in IR, they
have primarily been investigated in the context of web documents.
Legal due diligence documents, by their nature, have more similar
structure and language than we may expect out of standard web
collections. Moreover, many due diligence systems strive to facili-
tate real-time interactions and so time from document ingestion to
availability should be minimal. Such constraints further limit the
possible solution space when identifying near duplicate documents.
We present an examination of the tradeoffs that document signa-
ture methods face in the due diligence domain. In particular, we
quantify the trade-off between signature length, time to compute,
number of hash collisions, and number of nearest neighbours for a
90,000 document due diligence corpus.

ACM Reference Format:

Adam Roegiest, Edward Lee. 2019. On Tradeoffs Between Document Sig-
nature Methods for a Legal Due Diligence Corpus. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’19), July 21-25, 2019, Paris, France. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3331184.3331311

1 INTRODUCTION

In legal due diligence, lawyers are tasked with reviewing a target
company’s contracts and agreements to identify any potential risk
that may result from a merger or acquisition. Often, the deadlines
for review are tight and senior lawyers can be expected to provide an
assessment on as much information as could be gathered in the time
frame. While automated methods [17] can aid in the identification
of relevant clauses, they still need to be reviewed and summarized.
From a project management view, there is a desire to assign work
to the “best” reviewer for a document set while also minimizing the
amount of review to be performed by identifying near duplicates.
However, near duplicates can span a wide range of categories in
due diligence from signed and unsigned versions of a contract
to documents based on the same form to more traditional near
duplicates (e.g., small changes between documents).

Accordingly, in this work, we investigate the tradeoffs in vari-
ous near-duplicate detection algorithms, specifically those relying
on document signatures. We consider document signatures since
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they are relatively quick to compute and can be made to efficiently
retrieve near-duplicates [8, 13, 16]. The efficiency of the used mech-
anism is of paramount importance due to the project-based nature
of due diligence work. Users wish to have a system ingest docu-
ments and have them ready to use as soon as possible to ensure
that they can provide a timely and accurate report. Accordingly,
any mechanism used to identify near-duplicates has an implicit
requirement to be as close to real-time as possible. Delays would
mean that project management is delayed and resources may be
misappropriated. Moreover, the mechanism used should be of high
enough accuracy to ensure that the number of false identifications
is minimized and documents can be assigned to the appropriate
reviewer.

In this paper, we investigate three document signature tech-
niques, based on random vector projections, for their applicability
to near-duplicate detection in a due diligence context. We examine
Minhash [1], Simhash [4], weighted and unweighted TopSig [11]
methods on a range of signature lengths from 16 to 1024 bits. While
Simhash and TopSig are related techniques, we use them to inves-
tigate different formulations of the underlying random projection
methods (Section 3). Using a 90,000 document sample of the EDGAR
repository,! we examine the time taken to produce document signa-
tures, the number of unique signatures, and the number of collisions
per signature for each technique. These provide baseline measures
of the tradeoffs that we might expect to happen in user projects.
Collisions are not our sole measure since users may wish to tolerate
more variance when identifying near duplicates (e.g., documents
based on the same form). Accordingly, we examine the distributions
of nearest neighbours when signatures differ by 1 and 3 bits. While
more restrictive than has been done in web contexts [13], we do
not seek to be too permissive as these documents by their nature
have more similar content and structure than two arbitrary web
pages might. Moreover, some preliminary internal user testing has
shown that being too permissive degrades the user experience.

2 RELATED WORK

Document signatures have a long history in Information Retrieval
research [10] and we make no attempt to provide a summary of
all available resources. Instead, we aim to highlight why particular
approaches may not be appealing in our domain and use case. The
I Match algorithm of Chowdhoury et al. [5] and the refinement
by Kolcz et al. [15] uses IDF to select representative features for
inclusion in document signatures. Such approaches will require
collection dependent tuning and may not perform well on projects
of varying sizes. For similar reasons, we do not find proposals [19-
21] to learn optimal hash functions as lucrative since the learning
process may delay the ability of project managers to immediately
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leverage near-duplicate information (i.e., waiting for the hashes to
be learned) and cross-project models may provide bad encodings
(e.g., if two projects are very different).

While some work into curating collections for use in evaluat-
ing near duplication detection exists [5-7, 18], such corpora have
primarily focused on document collections that do not reflect our
problem domain. Finally, we are not concerned in this work with re-
trieval of documents using their signatures and leave investigating
the applicability such methods [2, 3, 12, 14] to future work.

3 EXPERIMENTAL DESIGN

To conduct our experiments, we collected approximately 90,000
documents from the publicly accessible EDGAR repository of fil-
ings that the United States Securities and Exchange Commission
requires publicly traded companies to submit. We collected doc-
uments from January 2017 until March 2018 that correspond to
various agreements, articles of incorporation, and material con-
tracts (e.g., leases, supply agreements).? Such documents form a
reasonable assortment of document types that could appear in a
due diligence document collection. According to in-house experts,
we might reasonably expect between 3%-10% of near-duplicates
in EDGAR depending on one’s exact definition (e.g., whether doc-
uments based on the same form document are “near duplicates”).
Accordingly, we might expect a good document signature method
would have no more than ~9,000 signature collisions in total.

To maintain experimental consistency between the different
document signatures, each document in the collection was fea-
turized into sliding windows of UTF-8 character 4-grams. More-
over, as capitalization and punctuation can play an important as-
pect in many legal documents (e.g., acronyms), we did not per-
form any transformations to the source text (e.g., lowercasing,
stopword removal, etc). Using these features, we then computed
document signatures according to the MinHash [1], Simhash [4],
and TopSig [11] algorithms for signatures lengths in the set of
N € {32, 64,128, 256,512, 1024} bits. The details of our implementa-
tions follow and code for these methods will be released publicly.

For TopSig, we associated each feature with a sparse random

vector {—1,0, 1}~ such that i’th entry had approximately a VN !
chance of generating a non-zero entry. For a given document, we
computed unweighted and weighted versions of TopSig by tak-
ing the sum of each feature’s random vector and the sum of each
feature’s weighted random vector using the formula of Geva and
De Vries [11], respectively. The final N-bit vector is generated by
setting the i’th bit to 1 if the summed vector’s i’th entry is posi-
tive. Random vectors were stored in an SQLite database stored in
RAM, indexed by their corresponding feature to provide convenient
look-up across multiple runs.

Simhash is essentially a more widely known predecessor to Top-
Sig that has used smaller bit spaces [9]. To implement Simhash, we
compute the SHA-3* hash of each feature and run the unweighted
TopSig algorithm. We used SHA-3 as it produces sufficiently random
and sparse vectors while being reasonably efficient.

2More specifically, Exhibits 1, 2, 3, 4, and 10.
3See https://github.com/kirasystems/science.
4As it allows generating arbitrary length hashes.
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Figure 1: The number of unique document signatures gener-
ated for each method at varying bit lengths.

For Minhash, MD5, SHA1, SHA-256, and SHA-512 hashes of ev-
ery feature were generated for the same reasons as Simhash. For
each document, we generated an N-bit MinHash in the following
way: we truncate each feature hash to the first % bits, select the
minimum hash value for each hashing function, and concatenate
the truncated minimum hashes together to form a single Minhash.
While this is a simpler implementation than is used in the litera-
ture [6, 8, 13], we intended this as a proof of concept to determine
whether a more complex solution would be worth the effort.

4 SIGNATURE PROPERTIES

In examining the number of unique document signatures for each
method (Figure 1), we see that the weighted TopSig vastly out-
performs all other methods for small N. In general, we might ex-
pect this since the weighted version will take into account the
relative importance of various terms, whereas unweighted TopSig
and Simhash treat everything equally. For larger N, all three ran-
dom projection methods end up converging on similar numbers of
unique signatures which is not surprising since features may then
be sufficiently distributed to ensure that there are less coincidental
collisions. It is worth noting that it appears that randomly generat-
ing the projection vectors yields less collision prone signatures than
a cryptographic hash. Moreover, initial experiments with Simhash
and SHA-512 yielded less effective signatures which indicates that
choice of hash is also important. Further investigation is needed to
determine if we could combine corpus statistics and SHA-3 hashes
to produce equivalent results to weighted TopSig.

Our simple Minhash implementation appears to catastrophically
fail and does not exceed more than 35,000 unique document signa-
tures. As we have noted, our implementation is much less complex
than in the literature[6, 8, 13] as it was intended to be a proof of con-
cept to determine whether additional complexity would be worth
the effort. Based on these results, we do not believe that a more
standard implementation would substantially outperform the other
methods tested and so report only on the simple implementation.

Table 1 reports the average time taken in seconds to produce
document signatures using each method. Simhash appears to be
generally much quicker than either TopSig variant. This is not sur-
prising since it doesn’t require reading from any outside sources
and can just compute the document signature using only the fea-
tures, whereas TopSig must first get the random vectors to perform
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Bits Simhash TopSig Weighted TopSig Minhash
16 | 0.166 (0.611) 0572 (0.546)  0.577 (0.549)  0.832 (0.689)
32 | 0.145(0.370) 0.587 (0.558)  0.598 (0.567)  0.831 (0.689)
64 | 0.165(0.431) 0.585(0.553)  0.595 (0.561)  0.834 (0.692)
128 | 0.181 (0.451) 0.582(0.549)  0.592(0.556)  0.842 (0.698)
256 | 0.250 (0.625) 0.573 (0.539)  0.583 (0.546)  0.856 (0.709)
512 | 0.385(0.970) 0.557 (0.525)  0.568 (0.531)  0.886 (0.734)
1024 | 0.610 (1.514) 0.571(0.536)  0.583 (0.544)  0.929 (0.768)

Table 1: Mean and standard deviation in seconds taken to
produce document signatures for each method at each bit
length.

Bits Simhash TopSig
16 | 11.537 (76.227) 12.378 (86.290)
32 | 2.157(19.315)  2.024 (14.562)
64 | 1.458(14.783)  1.403 (11.504
128 1.293 (13.042) 1.254 (10.803
256 | 1.223(12.423)  1.195(10.524
512 1.185 (11.874) 1.162 (10.369 1.127 (10.208) 2.826 (19.129)
1024 | 1.162 (11.595)  1.146 (10.294)  1.126 (10.201) 2.943 (18.781)

Table 2: Means and standard deviation in number of col-
lisions per document signature for each method and bit
length.

Weighted TopSig
2.285 (17.438)

Minhash
1115.035 (9742.314)
1.163 (10.381) 153.184 (3557.218)
1.140 (10.268) 3.773 (23.263)
1.133 (10.233) 3.778 (32.796)

( (

( (

1.129 (10.215) 4.732 (56.720)

the projection. Though it worth noting that as the number of bits
increases, the approaches reach parity in terms of speed which is
expected due to the increasing complexity in producing the crypto-
graphic hash. Additionally, TopSig times do not account for random
vector creation or corpus statistic collection as these can be done
prior to generation of document signatures. Accordingly, TopSig
does have some unaccounted for overhead but we do not find it
to be prohibitive. On the other hand, TopSig and Minhash do pro-
duce fairly consistent times for all bit lengths, owing to the fact
that neither needs to generate increasingly longer hashes during
generation time. However, Minhash is consistently the slowest de-
spite being so simple. This is further evidence that a more complex
Minhash solution may not be the most viable option.

Finally, one might reasonably wonder how many collisions oc-
cur on average for each method (Table 2). Across all levels of N
TopSig and Simhash perform similarly on average with Simhash
tending to have more variance, except at 16 bits. The why behind
the difference at 16 bits is not clear and may just be due to SHA-3
producing better random projections. The equivalent behaviour of
unweighted TopSig and Simhash comes down to the fact that they
are essentially performing the same computation but with vectors
of seemingly different quality. Weighted TopSig, as Figure 1 would
suggest, vastly outperforms all other methods at 16 and 32 bits. This
indicates that Weighted TopSig at 32 bits may provide a compelling
implementation choice across all architectures, while tailoring for
64-bit systems would give even better performance than any other
method. As we would expect, Minhash does not perform well at
any level and has far too many collisions to be useful.

5 NEAREST NEIGHBOURS ANALYSIS

In this section, we explore the distribution of neighbours that each
document would have under Simhash and TopSig algorithms for
two levels of dissimilarity (1 and 3 bit differences). We omit Minhash
as it would not provide sufficient granularity given the results in
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Table 2. We also only consider three bit lengths (32, 128, 1024) to
provide a concise examination across varying levels of refinement.
Figure 2 depicts the number of documents which have neighbours
within 1 Hamming distance. As we can see, there are 1000s of
documents with more than 10 nearest neighbours regardless of the
bit length or algorithm chosen. We note that part of this is due to
the fact that there are a non-trivial number of documents that did
not have any renderable text and so resulted in a trivial document
signature (i.e., 0). Though there are still many documents with valid
signatures that have many more than 10 neighbours.

Consistent with expectations, Simhash and unweighted TopSig
perform similarly at all bit lengths. While there is some minor
differences in the 32 bit plot, we are uncertain that these differences
are substantive enough to be perceived by users. On the other hand,
both approaches appear to be substantially inferior to weighted
TopSig but that may be expected at this point. Furthermore, as seen
in Figure 1, the refinement of weighted TopSig is less dramatic as
we increase bit length. This is not bad but indicates that there are
likely diminishing returns on larger lengths for Weighted TopSig.
For example, the number of documents with a single neighbour
drops from ~15k at 32 bits to ~10k at 128 bits but only drops to ~9k
at 1024 bits. While the differences are still substantive, it is unclear
how much larger signatures would help.

Figure 3 depicts the case when we are more permissive and
allow more potential neighbours by considering up to a Hamming
distance of 3 for 1024 bit signatures.’ Simhash and unweighted
TopSig still perform equivalently and also find more neighbours
than in Figure 2. In contrast, the differences for weighted TopSig are
not nearly as large. For example, Simhash and unweighted TopSig
“lose” ~4000 documents for the 0 neighbour group but weighted
TopSig “loses” only ~400. Of course, this trend is only apparent
at 1024 bits. There is much more “loss” of documents from the 0
neighbour group with 32 bit signatures between the 1 and 3 bit
difference cases. However, there is still much less “loss” than with
the other methods. Accordingly, it would appear to be the case
that weighted TopSig is able to better distribute documents in the
different signature spaces but is less able to do so effectively for
small lengths due to the reduced “space” for variations to take place
in. For example, weighted TopSig may be better able to separate
different flavours of similar agreements (e.g., agreements with Coca-
Cola versus agreements with Nabisco) with 1024 bits than with 32.
Further controlled investigation is necessary to examine how such
documents get distributed in the various signature spaces.

6 LIMITATIONS AND FUTURE WORK

The most obvious limitation of this work is that we have not used
what may be considered an optimal implementation of Minhash.
As we have previously stated, this choice was motivated by the
necessity of our own internal restrictions and the belief that if a
simple implementation did not show promise that a more complex
implementation is unlikely to be of sufficient benefit to allocate
such effort. Especially since other studies [13, 16] have shown
Simhash/TopSig to be efficacious for near duplicate detection tasks.

In addition, none of our implementations are highly tuned for
throughput or minimizing memory footprint. Such optimizations

5The 32 and 128 plots show the same trends as in Figure 2.
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Figure 3: Count of documents with set numbers of neigh-
bouring documents within 3 Hamming distance at 1024 bit
document signatures.

can always be performed later to improve the chosen method at
a particular bit length. Premature optimization of all algorithms
for all bit lengths was seen to be a poor allocation of resources
when straightforward implementations that allow reasonably fair
comparisons are much easier to produce.

While we have seen that Weighted TopSig is a front runner in
speed and effectiveness, one major limitation of the algorithm is
the need for collection statistics. As due diligence work is project
based, further work is necessary to examine how many documents
are necessary for Weighted TopSig to perform as well as we have
observed here. Moreover, additional work is necessary to determine
how well we could adapt the algorithm for an online setting (i.e.,
generating Weighted TopSig signatures as we process documents)
rather than waiting to perform generation in batches.

7 CONCLUSIONS

We have presented an examination of several document signature
methods on their ability to identify near-duplicates in a legal due
diligence corpus. We found that methods based on similar random
projection techniques perform well and that taking collection sta-
tistics into account can improve the generation of high fidelity
document signatures in small dimensions (e.g., 16 and 32 bits). The
employment of collection statistics appears to more evenly distrib-
ute documents in the signature space and results in fewer nearest
neighbours being identified for small changes in bit signatures. We

have also seen that using cryptographic hashes rather than projec-
tions can produce equivalent document signatures, which could
result in simpler implementations.

REFERENCES

[1] A.Broder. 1997. On the Resemblance and Containment of Documents. In Proc.
SEQUENCES *97.

[2] Timothy Chappell, Shlomo Geva, Anthony Nguyen, and Guido Zuccon. 2013.
Efficient Top-k Retrieval with Signatures. In Proc. ADCS ’13.

[3] Timothy Chappell, Shlomo Geva, and Guido Zuccon. 2015. Approximate nearest-
neighbour search with inverted signature slice lists. In Proc. ECIR ’15.

[4] Moses S. Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proc. STOC "02.

[5] Abdur Chowdhury, Ophir Frieder, David Grossman, and Mary Catherine McCabe.
[n. d.]. Collection Statistics for Fast Duplicate Document Detection. ACM Trans.
Inf. Syst. 20, 2 ([n. d.]).

[6] Jack G. Conrad, Xi S. Guo, and Cindy P. Schriber. 2003. Online Duplicate Docu-
ment Detection: Signature Reliability in a Dynamic Retrieval Environment. In
Proc. CIKM "03.

[7] Jack G. Conrad and Cindy P. Schriber. 2004. Constructing a Text Corpus for
Inexact Duplicate Detection. In Proc. SIGIR *04.

[8] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google News Personalization: Scalable Online Collaborative Filtering. In Proc.
WWW 07.

[9] Christopher M. De Vries and Shlomo Geva. 2012. Pairwise Similarity of TopSig
Document Signatures. In Proc. ADCS ’12.

[10] C. Faloutsos. 1990. Signature-based Text Retrieval Methods: A Survey. Data Eng.
13, 1 (1990).

[11] Shlomo Geva and Christopher M. De Vries. 2011. TOPSIG: Topology Preserving
Document Signatures. In Proc. CIKM ’11.

[12] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei,
Sameh Elnikety, and Yuxiong He. 2017. BitFunnel: Revisiting Signatures for
Search. In Proc. SIGIR ’17.

[13] Monika Henzinger. 2006. Finding Near-duplicate Web Pages: A Large-scale
Evaluation of Algorithms. In Proc. SIGIR "06.

[14] A.Kent, R. Sacks-Davis, and K. Ramamohanarao. 1990. A signature file scheme

based on multiple organizations for indexing very large text databases. J. Amer.

Soc. Info. Sci. 41, 7 (1990).

Aleksander Kolcz, Abdur Chowdhury, and Joshua Alspector. 2004. Improved

Robustness of Signature-based Near-replica Detection via Lexicon Randomization.

In Proc. KDD "04.

Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting

Near-duplicates for Web Crawling. In Proc. WWW ’07.

[17] Adam Roegiest, Alexander K. Hudek, and Anne McNulty. 2018. A Dataset and

an Examination of Identifying Passages for Due Diligence. In Proc. SIGIR 2018.

Enrique Vallés and Paolo Rosso. 2011. Detection of Near-duplicate User Generated

Contents: The SMS Spam Collection. In Proc. SMUC ’11.

[19] Qifan Wang, Bin Shen, Zhiwei Zhang, and Luo Si. 2014. Sparse Semantic Hashing
for Efficient Large Scale Similarity Search. In Proc. CIKM ’14.

[20] Yair Weiss, Antonio Torralba, and Rob Fergus. 2009. Spectral Hashing. In

Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans,

Y. Bengio, and L. Bottou (Eds.).

Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu. 2010. Self-taught Hashing for

Fast Similarity Search. In Proc. SIGIR 2010.

jpry
&

=
o)

=
&

™o
=



	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Design
	4 Signature Properties
	5 Nearest Neighbours Analysis
	6 Limitations and Future Work
	7 Conclusions
	References

